On the Maximal Directional Hilbert Transform

نویسندگان

  • IZABELLA LABA
  • ALESSANDRO MARINELLI
  • MALABIKA PRAMANIK
چکیده

For any dimension n ≥ 2, we consider the maximal directional Hilbert transform HU on R associated with a direction set U ⊆ Sn−1: HUf(x) := 1 π sup v∈U ∣∣∣p.v.∫ f(x− tv) dt t ∣∣∣. The main result in this article asserts that for any exponent p ∈ (1,∞), there exists a positive constant Cp,n such that for any finite direction set U ⊆ Sn−1, ||HU ||p→p ≥ Cp,n √ log #U, where #U denotes the cardinality of U . As a consequence, the maximal directional Hilbert transform associated with an infinite set of directions cannot be bounded on L(R) for any n ≥ 2 and any p ∈ (1,∞). This completes a result of Karagulyan [9], who proved a similar statement for n = 2 and p = 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Directional Operators and Mixed Norms

We present a survey of mixed norm inequalities for several directional operators, namely, directional Hardy-Littlewood maximal functions and Hilbert transforms (both appearing in the method of rotations of Calderón and Zygmund), X-ray transforms, and directional fractional operators related to Riesz type potentials with variable kernel. In dimensions higher than two several interesting question...

متن کامل

Maximal Theorems for the Directional Hilbert Transform on the Plane

For a Schwartz function f on the plane and a non-zero v ∈ R2 define the Hilbert transform of f in the direction v to be Hvf(x) = p.v. ∫ R f(x− vy) dy y Let ζ be a Schwartz function with frequency support in the annulus 1 ≤ |ξ| ≤ 2, and ζf = ζ ∗ f . We prove that the maximal operator sup|v|=1|Hvζf | maps L2 into weak L2, and Lp into Lp for p > 2. The L2 estimate is sharp. The method of proof is ...

متن کامل

Pseudodifferential Operators with Rough Symbols

In this work, we develop L boundedness theory for pseudodifferential operators with rough (not even continuous in general) symbols in the x variable. Moreover, the B(L) operator norms are estimated explicitly in terms of scale invariant quantities involving the symbols. All the estimates are shown to be sharp with respect to the required smoothness in the ξ variable. As a corollary, we obtain L...

متن کامل

Interpolation, Maximal Operators, and the Hilbert Transform

Real-variable methods are used to prove the Marcinkiewicz Interpolation Theorem, boundedness of the dyadic and Hardy-Littlewood maximal operators, and the Calderón-Zygmund Covering Lemma. The Hilbert transform is defined, and its boundedness is investigated. All results lead to a final theorem on the pointwise convergence of the truncated Hilbert transform

متن کامل

A Sharp Estimate for the Hilbert Transform along Finite Order Lacunary Sets of Directions

Let D be a nonnegative integer and Θ ⊂ S1 be a lacunary set of directions of order D. We show that the Lp norms, 1 < p < ∞, of the maximal directional Hilbert transform in the plane HΘ f (x ) B sup v ∈Θ p.v. ∫ R f (x + tv ) dt t , x ∈ R 2, are comparable to (log #Θ) 2 . For vector elds vD with range in a lacunary set of of order D and generated using suitable combinations of truncations of Lips...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017